Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
BMC Microbiol ; 23(1): 135, 2023 05 17.
Article in English | MEDLINE | ID: covidwho-2321595

ABSTRACT

Mycophenolic acid (MPA) is the active ingredient in the most important immunosuppressive pharmaceuticals. It has antifungal, antibacterial, antiviral, anti-psoriasis, and antitumor activities. Therefore, its overproduction in addition to gene expression analysis was our main target. Through this study, we isolated a novel potent mycophenolic acid (MPA) producer strain of the genus Penicillium from the refrigerated Mozzarella cheese and it was identified with the molecular marker ITS and benA genes as P. arizonenseHEWt1. Three MPA overproducer mutants were isolated by exposing the wild type to different doses of gamma-rays, and the fermentation conditions for the highest production of MPA were optimized. The results indicated that MPA amounts produced by the mutants MT1, MT2, and MT3 were increased by 2.1, 1.7, and 1.6-fold, respectively, compared with the wild-type. The growth of both mutant and wild-type strains on PD broth, adjusted to pH 6 and incubated at 25 °C for 15 d, were the best conditions for maximum production of MPA. In a silico study, five orthologs genes of MPA biosynthesizing gene clusters in P. brevicompactum were predicted from the genome of P. arizonense. Sequencing and bioinformatic analyses proved the presence of five putative genes namely mpaA, mpaC, mpaF, mpaG, and mpaH in the P. arizonense HEWt1 genome. Gene expression analysis by qRT-PCR indicated an increase in the transcription value of all annotated genes in the three mutants over the wild type. A highly significant increase in the gene expression of mpaC, mpaF, and mpaH was observed in P. arizonense-MT1 compared with wild-type. These results confirmed the positive correlation of these genes in MPA biosynthesis and are the first report regarding the production of MPA by P. arizonense.Kew word.Mycophenolic acid, Penicillium arizonense, mutagenesis, gene expression.


Subject(s)
Mycophenolic Acid , Penicillium , Mycophenolic Acid/pharmacology , Mycophenolic Acid/metabolism , Immunosuppressive Agents , Penicillium/genetics , Polymerase Chain Reaction
2.
Viruses ; 15(3)2023 03 04.
Article in English | MEDLINE | ID: covidwho-2268351

ABSTRACT

Liver transplant recipients are immunocompromised and have low immunogenicity to produce antibodies in anti-COVID-19 vaccination. Whether immunosuppressant adjustment could facilitate anti-COVID-19 antibody production in anti-COVID-19 mRNA vaccination is undetermined. Our patients were informed to temporarily suspend mycophenolate mofetil (MMF) or everolimus (EVR) for 2 weeks during both the 1st and 2nd doses of Moderna mRNA-1273 vaccine. A total of 183 recipients receiving two doses of Moderna mRNA-1273 vaccine were enrolled and grouped into tacrolimus monotherapy (MT, n = 41), and dual therapy with non-adjustment (NA, n = 23), single suspension (SS, n = 19) and double suspension (DS, n = 100) of MMF/EVR in two-dose mRNA vaccination. A total of 155 (84.7%) patients had a humoral response to vaccines in this study. The humoral response rates were 60.9%, 89.5%, 91.0% and 80.5% in NA, SS, DS, and MT group patients, respectively (p = 0.003). Multivariate analysis showed that favorable factors for humoral response were temporary suspension of MMF/EVR and monotherapy, and unfavorable factors were deceased donor liver transplantation, WBC count < 4000/uL, lymphocyte < 20% and tacrolimus trough level ≥ 6.8 ng/mL. In conclusion, temporary two-week suspension of anti-proliferation immunosuppressants could create a window to facilitate antibody production during anti-COVID-19 mRNA vaccination. This concept may be applied to other vaccinations in liver transplant recipients.


Subject(s)
COVID-19 , Liver Transplantation , Humans , Immunosuppressive Agents/therapeutic use , 2019-nCoV Vaccine mRNA-1273 , Tacrolimus , Antibody Formation , Living Donors , Vaccination , Everolimus , Mycophenolic Acid/therapeutic use , COVID-19/prevention & control , RNA, Messenger/genetics , Transplant Recipients , Antibodies, Viral
3.
J Nephrol ; 36(5): 1451-1455, 2023 06.
Article in English | MEDLINE | ID: covidwho-2279378

ABSTRACT

Tubulointerstitial nephritis and uveitis (TINU) is a rare autoimmune disorder often triggered by drugs and infections. Since the onset of the COVID-19 pandemic, we have observed an unusual cluster of paediatric cases. Four children (3 females) were diagnosed with TINU (median age 13 years) following a kidney biopsy and ophthalmologic assessment. Presenting symptoms included abdominal pain (3 cases), fatigue, weight loss and vomiting (2 cases). At presentation, median eGFR was 50.3 ml/min/1.73m2 (range 19.2-69.3). Anaemia was common (3 cases) with median haemoglobin of 10.45 g/dL (range 8.4-12.1). Two patients were hypokalaemic and 3 had non-hyperglycaemic glycosuria. Median urine protein:creatinine ratio was 117 mg/mmol (range 68-167). SARS-CoV-2 antibodies were detected in 3 cases at presentation. All were asymptomatic for COVID-19 with a negative PCR. Kidney function improved following high-dose steroids. However, disease relapse was observed during steroid tapering (2 cases) and upon discontinuation (2 cases). All patients responded well to further high dose steroids. Mycophenolate mofetil was introduced as a steroid-sparing agent. At latest follow up (range 11-16 months), median eGFR was 109.8 ml/min/1.73m2. All four patients continue on mycophenolate mofetil, with 2 patients applying topical steroids for uveitis. Our data suggest that SARS-CoV-2 infection might be a trigger for TINU.


Subject(s)
COVID-19 , Nephritis, Interstitial , Uveitis , Female , Humans , Child , Adolescent , Mycophenolic Acid , Pandemics , COVID-19/epidemiology , SARS-CoV-2 , Nephritis, Interstitial/diagnosis , Nephritis, Interstitial/drug therapy , Nephritis, Interstitial/epidemiology , Uveitis/diagnosis , Uveitis/drug therapy , Uveitis/epidemiology
4.
Clin Exp Nephrol ; 27(6): 574-582, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2256757

ABSTRACT

BACKGROUND: Kidney transplant patients have lower antibody acquisition after SARS-CoV-2 vaccination. The efficacy of vaccines in Japanese kidney transplant patients with specific characteristics, such as predominant living-donor, ABO-incompatible kidney transplant, and low-dose immunosuppression, requires verification. METHODS: We conducted a prospective study to estimate anti-SARS-CoV-2 antibody levels in 105 kidney transplant patients and 57 controls. Blood samples were obtained before vaccination, 1, 3, and 6 months after second vaccination, and 1 month after third vaccination. We investigated antibody acquisition rates, antibody levels, and factors associated with antibody acquisition. RESULTS: One month after second vaccination, antibody acquisition was 100% in the controls but only 36.7% in the kidney transplant group (P < 0.001). Antibody levels in positive kidney transplant patients were also lower than in the controls (median, 4.9 arbitrary units vs 106.4 arbitrary units, respectively, P < 0.001). Years after kidney transplant (odds ratio 1.107, 95% confidence interval 1.012-1.211), ABO-incompatible kidney transplant (odds ratio 0.316, 95% confidence interval 0.101-0.991) and mycophenolate mofetil use (odds ratio 0.177, 95% confidence interval 0.054-0.570) were significant predictors for antibody acquisition after second vaccination. After third vaccination, antibody positivity in the kidney transplant group increased to 75.3%, and antibody levels in positive patients were 71.7 arbitrary units. No factors were associated with de novo antibody acquisition. CONCLUSIONS: In Japanese kidney transplant patients, years after kidney transplant, ABO-incompatible kidney transplant and mycophenolate mofetil use were predictors for antibody acquisition after second vaccination. Third vaccination improves antibody status even in patients who were seronegative after the second vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Kidney Transplantation , Humans , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , East Asian People , Mycophenolic Acid/therapeutic use , Prospective Studies , SARS-CoV-2 , Transplant Recipients , Vaccination
5.
Transplantation ; 106(8): 1615-1621, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-2252476

ABSTRACT

BACKGROUND: Elderly kidney transplant recipients (KTRs) represent almost one third of the total kidney transplant population. These patients have a very high coronavirus disease 2019 (COVID-19)-related mortality, whereas their response to COVID-19 vaccination is impaired. Finding ways to improve the COVID-19 vaccination response in this vulnerable population is of uttermost importance. METHODS: In the OPTIMIZE trial, we randomly assign elderly KTRs to an immunosuppressive regimen with standard-exposure calcineurin inhibitor (CNI), mycophenolate mofetil, and prednisolone or an adapted regimen with low dose CNI, everolimus, and prednisolone. In this substudy, we measured the humoral response after 2 (N = 32) and 3 (N = 22) COVID-19 mRNA vaccinations and the cellular response (N = 15) after 2 vaccinations. RESULTS: . The seroconversion rates of elderly KTRs on a standard immunosuppressive regimen were only 13% and 38% after 2 and 3 vaccinations, respectively, whereas the response rates of KTRs on the everolimus regimen were significantly higher at 56% ( P = 0.009) and 100% ( P = 0.006). Levels of severe acute respiratory syndrome coronaVirus 2 IgG antibodies were significantly higher at both time points in the everolimus group ( P = 0.004 and P < 0.001). There were no differences in cellular response after vaccination. CONCLUSIONS: An immunosuppressive regimen without mycophenolate mofetil, a lower CNI dose, and usage of everolimus is associated with a higher humoral response rate after COVID-19 vaccination in elderly KTRs after transplantation. This encouraging finding should be investigated in larger cohorts, including transplant recipients of all ages.


Subject(s)
COVID-19 Vaccines , Kidney Transplantation , Transplant Recipients , Aged , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Calcineurin Inhibitors , Everolimus/therapeutic use , Humans , Immunity, Humoral , Immunosuppressive Agents/therapeutic use , Kidney Transplantation/adverse effects , Mycophenolic Acid , Prednisolone , Vaccination
6.
Clin Pharmacol Ther ; 114(1): 118-126, 2023 07.
Article in English | MEDLINE | ID: covidwho-2243331

ABSTRACT

Despite (repeated) boosting, kidney transplant recipients (KTRs) may remain at increased risk of severe COVID-19 since a substantial number of individuals remain seronegative or with low antibody titers. In particular, mycophenolic acid use has been shown to affect antibody formation negatively and may be an important modifiable risk factor. We investigated the exposure-response relationship between mycophenolic acid 12-hour area under the curve (AUC0-12h ) exposure and seroconversion including antibody titers after vaccination using mRNA-1273 SARS-CoV-2 vaccine (Moderna) in 316 KTRs from our center that participated in the national Dutch renal patients COVID-19 vaccination - long term efficacy and safety of SARS-CoV-2 vaccination in kidney disease patients vaccination study. After two vaccination doses, 162 (51%) KTRs seroconverted. KTRs treated with mycophenolic acid showed less seroconversion and lower antibody titers compared with KTRs without mycophenolic acid (44% vs. 77%, and 36 binding antibody units (BAU)/mL vs. 340 BAU/mL; P < 0.001). The mean mycophenolic acid AUC0-12h exposure was significantly lower in KTRs who seroconverted compared with KTRs who did not (39 vs. 29 mg⋅h/L; P < 0.001). High mycophenolic acid exposure (±90 mg⋅h/L) and no exposure to mycophenolic acid resulted in a seroconversion rate ranging from 10% to 80%. Every 10 mg⋅h/L increase in mycophenolic acid AUC0-12h gave an adjusted odds ratio for seroconversion of 0.87 (95% confidence interval (CI), 0.79-0.97; P = 0.010) and 0.89 (95% CI, 0.85-0.93; P < 0.001) for KTRs on dual and triple maintenance immunosuppressive therapy, respectively. Higher mycophenolic acid AUC0-12h correlated with lower antibody titers (R = 0.44, P < 0.001). This study demonstrates the exposure-response relationship between gold standard mycophenolic acid exposure and antibody formation to support interventional studies investigating mycophenolic acid adjustment to improve antibody formation after further boosting.


Subject(s)
COVID-19 Vaccines , COVID-19 , Kidney Transplantation , Mycophenolic Acid , Humans , Antibodies , Antibody Formation , Cohort Studies , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Kidney Transplantation/adverse effects , Mycophenolic Acid/adverse effects , SARS-CoV-2 , Vaccination
7.
Br J Dermatol ; 188(4): 499-505, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2242328

ABSTRACT

BACKGROUND: The risk of infectious complications among patients with pemphigus managed by rituximab is yet to be precisely elucidated. OBJECTIVES: To evaluate the risk of infections in patients with pemphigus managed by rituximab vs. first-line corticosteroid-sparing agents [azathioprine and mycophenolate mofetil (MMF)]. METHODS: A global population-based cohort study compared patients with pemphigus initiating rituximab (n = 963) vs. azathioprine or MMF (n = 963) regarding the risk of 26 different infections. Propensity score matching was conducted to optimize comparability. RESULTS: During the initial 12 months following treatment, patients under rituximab experienced elevated risk of COVID-19 [hazard ratio (HR) 1.82, 95% confidence interval (CI) 1.06-3.14; P = 0.028], parasitic diseases (HR 3.22, 95% CI 1.04-9.97; P = 0.032) and cytomegalovirus (CMV) infection (HR 1.63, 95% CI 1.04-2.58; P = 0.033). When evaluating infections developing ≥ 12 months after drug initiation, rituximab was associated with greater risk of pneumonia (HR 1.45, 95% CI 1.00-2.10; P = 0.047), COVID-19 (HR 1.87, 95% CI 1.49-2.33; P < 0.001), osteomyelitis (HR 2.42, 95% CI 1.11-5.31; P = 0.023), herpes simplex virus (HR 2.06, 95% CI 1.03-4.11; P = 0.037) and CMV (HR 1.63, 95% CI 1.07-2.49; P = 0.023) infections. CONCLUSIONS: Within the first 12 months after treatment, patients under rituximab experience an elevated risk of COVID-19, parasitic and CMV infections. Rituximab is associated with pneumonia, osteomyelitis and viral diseases even beyond the first year after therapy. Pneumococcal vaccine and suppressive antiviral therapy should be considered even 1 year following therapy. There is no signal for elevated risk of tuberculosis, hepatitis B virus reactivation, Pneumocystis jiroveci pneumonia and progressive multifocal leukoencephalopathy.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Pemphigus , Humans , Azathioprine/therapeutic use , Rituximab/adverse effects , Mycophenolic Acid , Immunosuppressive Agents/adverse effects , Pemphigus/drug therapy , Pemphigus/epidemiology , Cohort Studies , Cytomegalovirus Infections/chemically induced
8.
Hepatol Commun ; 7(2): e0025, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2222831

ABSTRACT

BACKGROUND AND AIMS: We retrospectively assessed the clinical Pfizer's mRNA SARS-CoV-2 BNT162b2 vaccination outcomes and the serologic impact on liver transplant (LT) recipients. PATIENTS AND METHODS: One hundred and sixty-seven LT cases followed between March 1, 2020 and September 25, 2021, and were stratified into two groups: (1) 37 LT recipients after SARS-CoV-2 infection before vaccine era and (2) 130 LT recipients vaccinated with 2 doses without earlier SARS-CoV-2 exposure. Serum SARS-CoV-2 spike immunoglobulins (anti-S) were assessed 7 days following vaccination (Liaison assay). RESULTS: In addition to the 37 nonvaccinated cases (22.2% of total group) who experienced SARS-CoV-2 infection (34 symptomatic and 3 asymptomatic), another 8 vaccinated symptomatic recipients (4.8%) were infected (5 from the third and three from the fourth waves). Three of the 45 infected cases died (6.7%) before the vaccine program. Vaccinated group: of the 130 LT vaccinated recipients, 8 (6.2%) got infected postvaccination (added to the infected group) and were defined as clinical vaccine failure; 38 (29.2%) were serological vaccine failure (total failure 35.4%), and 64.6% cases were serological vaccine responders (anti-S≥19 AU/mL). Longer post-LT interval and lower consumption of immunosuppressants (steroids, FK506, and mycophenolate mofetil) correlated with favorable SARS-CoV-2 vaccine response. Mammalian target of rapamycin inhibitors improved vaccine outcomes associated with lower FK506 dosages and serum levels. Patients with anti-S levels <100 AU/mL risked losing serologic response or being infected with SARS-CoV-2. A booster dose achieved an effective serologic response in a third of failures and most responders, securing better and possibly longer protection. CONCLUSION: Pfizer's BNT162b2 vaccine seems to lessen SARS-CoV-2 morbidity and mortality of LT recipients even with weak serological immunogenicity. Switching mycophenolate mofetil to mammalian target of rapamycin inhibitors might be effective before boosters in vaccine failure cases. A booster vaccine should be considered for nonresponders and low-responders after the second dose.


Subject(s)
COVID-19 , Liver Transplantation , Humans , COVID-19 Vaccines , BNT162 Vaccine , COVID-19/prevention & control , Liver Transplantation/adverse effects , Mycophenolic Acid , Retrospective Studies , Tacrolimus , SARS-CoV-2 , Cost of Illness , TOR Serine-Threonine Kinases
9.
Transplantation ; 107(5): 1139-1150, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2191236

ABSTRACT

BACKGROUND: The impaired immune response to coronavirus disease 2019 (COVID-19) vaccination in kidney transplant recipients (KTRs) leads to an urgent need for adapted immunization strategies. METHODS: Sixty-nine KTRs without seroconversion after ≥3 COVID-19 vaccinations were enrolled, and humoral response was determined after an additional full-dose mRNA-1273 vaccination by measuring severe acute respiratory syndrome coronavirus 2-specific antibodies and neutralizing antibody activity against the Delta and Omicron variants 1 and 3 mo postvaccination. T-cell response was analyzed 3 mo postvaccination by assessing interferon-γ release. Mycophenolic acid (MPA) was withdrawn in 41 KTRs 1 wk before until 4 wk after vaccination to evaluate effects on immunogenicity. Graft function, changes in donor-specific anti-HLA antibodies, and donor-derived cell-free DNA were monitored in KTRs undergoing MPA withdrawal. RESULTS: Humoral response to vaccination was significantly stronger in KTRs undergoing MPA withdrawal 1 mo postvaccination; however, overall waning humoral immunity was noted in all KTRs 3 mo after vaccination. Higher anti-S1 immunoglobulin G levels correlated with better neutralizing antibody activity against the Delta and Omicron variants, whereas no significant association was detected between T-cell response and neutralizing antibody activity. No rejection occurred during study, and graft function remained stable in KTRs undergoing MPA withdrawal. In 22 KTRs with Omicron variant breakthrough infections, neutralizing antibody activity was better against severe acute respiratory syndrome coronavirus 2 wild-type and the Delta variants than against the Omicron variant. CONCLUSIONS: MPA withdrawal to improve vaccine responsiveness should be critically evaluated because withdrawing MPA may be associated with enhanced alloimmune response, and the initial effect of enhanced seroconversion rates in KTRs with MPA withdrawal disappears 3 mo after vaccination.


Subject(s)
COVID-19 , Kidney Transplantation , Vaccines , Humans , Mycophenolic Acid , Kidney Transplantation/adverse effects , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Neutralizing , Antibodies, Viral , Immunity, Humoral , Transplant Recipients
10.
Front Immunol ; 13: 1007089, 2022.
Article in English | MEDLINE | ID: covidwho-2055023

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and identified that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14- mediated NF-κB activation and cytokine induction. Furthermore, IMPDH2 inhibitors (RIB, MPA) or NF-κB inhibitors (bortezomib, BAY 11-7082) restricted SARS-CoV-2 infection, indicating that IMPDH2-mediated activation of NF-κB signaling is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in inducing NF-κB activation through IMPDH2 to promote viral infection.


Subject(s)
COVID-19 , Exoribonucleases , IMP Dehydrogenase , NF-kappa B , Viral Nonstructural Proteins , Bortezomib , Cytokines/metabolism , Exoribonucleases/metabolism , Humans , IMP Dehydrogenase/metabolism , Inosine , Interleukin-6 , Interleukin-8 , Mycophenolic Acid , NF-kappa B/metabolism , Oxidoreductases , Proteomics , Ribavirin , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
11.
Transplantation ; 106(10): e441-e451, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2051786

ABSTRACT

BACKGROUND: The chronic use of immunosuppressive drugs is a key risk factor of death because of coronavirus disease 2019 (COVID-19) in kidney transplant recipients (KTRs), although no evident association between the class of immunosuppressive and outcomes has been observed. Thus, we aimed to compare COVID-19-associated outcomes among KTRs receiving 3 different immunosuppressive maintenance regimes. METHODS: This study included data from 1833 KTRs with COVID-19 diagnosed between March 20 and April 21 extracted from the national registry before immunization. All patients were taking calcineurin inhibitor associated with mycophenolate acid (MPA, n = 1258), azathioprine (AZA, n = 389), or mammalian targets of rapamycin inhibitors (mTORi, n = 186). Outcomes within 30 and 90 d were assessed. RESULTS: Compared with patients receiving MPA, the 30-d (79.9% versus 87.9% versus 89.2%; P < 0.0001) and 90-d (75% versus 83.5% versus 88.2%; P < 0.0001) unadjusted patient survivals were higher in those receiving AZA or mTORi, respectively. Using adjusted multivariable Cox regression, compared with patients receiving AZA, the use of MPA was associated with a higher risk of death within 30 d (adjusted hazard ratio [aHR], 1.70; 95% confidence interval [CI], 1.21-2.40; P = 0.003), which was not observed in patients using mTORi (aHR, 0.78; 95% CI, 0.45-1.35; P = 0.365). At 90 d, although higher risk of death was confirmed in patients receiving MPA (aHR, 1.46; 95% CI, 1.09-1.98; P = 0.013), a reduced risk was observed in patients receiving mTORi (aHR, 0.59; 95% CI, 0.35-0.97; P = 0.04) compared with AZA. CONCLUSIONS: This national cohort data suggest that, in KTRs receiving calcineurin inhibitor and diagnosed with COVID-19, the use of MPA was associated with higher risk of death, whereas mTORi use was associated with lower risk of death.


Subject(s)
COVID-19 , Kidney Transplantation , Azathioprine , Calcineurin Inhibitors/adverse effects , Enzyme Inhibitors , Humans , Immunosuppressive Agents/adverse effects , Kidney Transplantation/adverse effects , Mycophenolic Acid/adverse effects , Sirolimus/adverse effects , TOR Serine-Threonine Kinases
12.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: covidwho-2043774

ABSTRACT

Coronaviruses as possible cross-species viruses have caused several epidemics. The ongoing emergency of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has posed severe threats to the global economy and public health, which has generated great concerns about zoonotic viruses. Swine acute diarrhea syndrome coronavirus (SADS-CoV), an alpha-coronavirus, was responsible for mass piglet deaths, resulting in unprecedented economic losses, and no approved drugs or vaccines are currently available for SADS-CoV infection. Given its potential ability to cause cross-species infection, it is essential to develop specific antiviral drugs and vaccines against SADS-CoV. Drug screening was performed on a total of 3523 compound-containing drug libraries as a strategy of existing medications repurposing. We identified five compounds (gemcitabine, mycophenolate mofetil, mycophenolic acid, methylene blue and cepharanthine) exhibiting inhibitory effects against SADS-CoV in a dose-dependent manner. Cepharanthine and methylene blue were confirmed to block viral entry, and gemcitabine, mycophenolate mofetil, mycophenolic acid and methylene blue could inhibit viral replication after SADS-CoV entry. This is the first report on SADS-CoV drug screening, and we found five compounds from drug libraries to be potential anti-SADS-CoV drugs, supporting the development of antiviral drugs for a possible outbreak of SADS-CoV in the future.


Subject(s)
Antiviral Agents , COVID-19 , Alphacoronavirus , Animals , Antiviral Agents/pharmacology , Methylene Blue , Mycophenolic Acid , SARS-CoV-2 , Swine
13.
RMD Open ; 8(2)2022 09.
Article in English | MEDLINE | ID: covidwho-2038338

ABSTRACT

BACKGROUND: Patients with inflammatory rheumatic and musculoskeletal diseases (iRMD) receiving mycophenolic acid (MPA) may have a less favourable outcome from COVID-19 infection. Our aim was to investigate whether MPA treatment is associated with severe infection and/or death. METHODS: IRMD patients with and without MPA treatment with highly suspected/confirmed COVID-19 were included in this observational multicentre study. The primary outcome was death rate from COVID-19 with secondary objectives to determine the severity of infection and length of hospital stay. Outcome comparisons were made using regression models with and without adjustment on prespecified confounding factors. ORs, sub-HR (sHR) and 95% CIs were calculated using patients not treated with MPA as a reference group. RESULTS: Of the 1977 patients, 1928 were not treated with MPA (393 were MPA eligible), and 49 patients were treated with MPA. MPA-treated patients had more severe disease, longer hospital stays and higher death rate from COVID-19 than non-MPA patients (OR 8.02 (95% CI 3.35 to 19.20), p<0.001; sHR 0.57 (95% CI 0.33 to 0.98), p=0.040; OR 11.58 (95% CI 4.10 to 32.69), p<0.001). In adjusted analyses, however, no outcome was independently associated with MPA treatment. Death rate, severity and length of hospital stay of MPA-treated patients were not significantly different from those of not treated but MPA-eligible patients. CONCLUSION: MPA therapy is not associated with a more severe COVID-19 infection. However, due to increased vulnerability of developing a severe form of COVID-19, careful consideration should be taken with iRMD patients likely to be treated with MPA. TRIAL REGISTRATION NUMBER: NCT04353609.


Subject(s)
COVID-19 , Mycophenolic Acid , COVID-19/epidemiology , Cohort Studies , Humans , Mycophenolic Acid/therapeutic use
14.
Clin Rheumatol ; 41(12): 3879-3885, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2007159

ABSTRACT

BACKGROUND: The COVID-19 outbreak has led to the rapid development and administration of the COVID-19 vaccines worldwide. Data about the immunogenicity and adverse effects of the vaccine on patients with systemic autoimmune rheumatic diseases (SARDs) is emerging. AIM: To evaluate Pfizer/BioNTech (BNT162b2) mRNA-based vaccine second-dose immunogenicity and safety, and the relation between them, in patients with SARDs. METHODS: A total of one hundred forty tow adults who received two doses of the BNT162b2 vaccine were included in the study. The SARDs group included Ninety-nine patients and the control group (forty-three participants) comprised a mixture of healthy participants and patients who were seen at the rheumatology clinic for non-SARDs. Anti-SARS-CoV-2 IgG antibodies against the Spike protein were evaluated using a SARS-CoV-2 IgG immunoassay. A level of > 150 AU/mL was considered positive. An adverse effects questionnaire was given to the participants upon their first visit to the clinic after their BNT162b2 vaccination. RESULTS: Of the 142 participants, 116 were seropositive (81.7%) and 26 (18.3%) were seronegative. Of the seronegative participants, 96.2% were SARDs patients. The proportion of seropositivity in the SARDs patients treated with any immunosuppressant was significantly lower (69.9%) compared to the control group and SARDs patients not receiving immunosuppressants (96.8%). A significant negative correlation between seronegativity and treatment with rituximab, mycophenolate mofetil (MMF), and prednisone was found in the SARDs group (p = 0.004, 0.044, 0.007 respectively). No fever was observed following the BNT162b2 vaccine in seronegative patients, and the frequency of musculoskeletal adverse effects upon the second dose of the BNT162b2 vaccine was significantly higher in seropositive compared to seronegative patients and in the control group compared to the SARDs patients (p = 0.045, p = 0.02 respectively). CONCLUSION: A decline in the immunogenicity to the second dose of BNT162b2 mRNA is seen in patients with SARDs, especially in patients treated with rituximab, MMF, and prednisone. Adverse effects of the vaccine including fever and musculoskeletal symptoms might be a signal for the acquisition of immunity in those patients. KEY POINTS: • BNT162b2 mRNA vaccine is less immunogenic in SARDs patients compared to the control group. • Rituximab, prednisone, and mycophenolate mofetil significantly reduced immunogenicity to the vaccine. • There is a correlation between immunogenicity and adverse effects of the vaccine.


Subject(s)
COVID-19 , Rheumatic Diseases , Adult , Humans , BNT162 Vaccine , Rituximab/therapeutic use , Prednisone/therapeutic use , COVID-19 Vaccines/adverse effects , Mycophenolic Acid/therapeutic use , COVID-19/prevention & control , SARS-CoV-2 , Rheumatic Diseases/drug therapy , Rheumatic Diseases/epidemiology , Antibodies, Viral , Immunoglobulin G/therapeutic use
15.
Am J Transplant ; 22(12): 3137-3142, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1973539

ABSTRACT

A recent study concluded that SARS-CoV-2 mRNA vaccine responses were improved among transplant patients taking mTOR inhibitors (mTORi). This could have profound implications for vaccine strategies in transplant patients; however, limitations in the study design raise concerns about the conclusions. To address this issue more robustly, in a large cohort with appropriate adjustment for confounders, we conducted various regression- and machine learning-based analyses to compare antibody responses by immunosuppressive agents in a national cohort (n = 1037). MMF was associated with significantly lower odds of positive antibody response (aOR = 0.09 0.130.18 ). Consistent with the recent mTORi study, the odds tended to be higher with mTORi (aOR = 1.00 1.452.13 ); however, importantly, this seemingly protective tendency disappeared (aOR = 0.47 0.731.12 ) after adjusting for MMF. We repeated this comparison by combinations of immunosuppression agents. Compared to MMF + tacrolimus, MMF-free regimens were associated with higher odds of positive antibody response (aOR = 2.39 4.267.92 for mTORi+tacrolimus; 2.34 5.5415.32 for mTORi-only; and 6.78 10.2515.93 for tacrolimus-only), whereas MMF-including regimens were not, regardless of mTORi use (aOR = 0.81 1.542.98 for MMF + mTORi; and 0.81 1.512.87 for MMF-only). We repeated these analyses in an independent cohort (n = 512) and found similar results. Our study demonstrates that the recently reported findings were confounded by MMF, and that mTORi is not independently associated with improved vaccine responses.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , Tacrolimus , Mycophenolic Acid/therapeutic use , Antibody Formation , MTOR Inhibitors , COVID-19 Vaccines , SARS-CoV-2 , Graft Rejection/prevention & control , COVID-19/prevention & control , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Transplant Recipients , TOR Serine-Threonine Kinases
16.
Transplantation ; 106(10): 2063-2067, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1961295

ABSTRACT

BACKGROUND: Solid organ transplant recipients are at high risk for fatal forms of coronavirus disease 2019 (COVID-19). We conducted a cohort study among kidney transplant (KT) recipients from the French Solid Organ Transplant COVID-19 Registry to investigate the association between maintenance immunosuppressive drugs and 60-d mortality. METHODS: Data from all KT recipients with COVID-19 included in the French Solid Organ Transplant COVID-19 Registry between February 28, 2020, and December 30, 2020, were retrieved. We evaluated associations between immunosuppressive drugs and death within 60 d using logistic regression, with all baseline characteristics considered to influence outcome or immunosuppressive regimen. The Benjamini-Hochberg correction was used for controlling false positive rate; 40 multiple imputations were performed. Adjusted P value <0.05 was considered statistically significant. RESULTS: There were 1451 KT recipients included. Median age was 58 y, and 66.4% were men. Most frequent comorbidities were hypertension (81.9%), diabetes (34.5%), and cardiovascular disease (29.5%). Median time since transplant was 71 mo. Maintenance immunosuppression regimens included calcineurin inhibitors (1295, 89.2%), antimetabolites (1205, 83%), corticosteroids (1094, 75.4%), mammalian target of rapamycin inhibitors (144, 9.9%), and belatacept (58, 4.0%). Among 1451 transplant recipients, 201 (13.9%) died within 60 d. Older age and higher baseline serum creatinine were associated with mortality (odds ratios, 1.09 [1.07-1.11] and 1.01 [1.005-1.009], P < 0.001). Corticosteroid-free regimens were associated with a significantly lower risk of death (odds ratio, 0.48 [0.31-0.76]; P = 0.011). CONCLUSIONS: Corticosteroid-free regimens were associated with a lower risk of death in KT recipients with COVID-19. Long-term exposure to corticosteroids impairs immune functions and may predispose solid organ transplant recipients to severe forms of COVID-19.


Subject(s)
COVID-19 , Kidney Transplantation , Abatacept , Antimetabolites , COVID-19/mortality , Calcineurin Inhibitors , Cohort Studies , Creatinine , Female , Humans , Immunosuppressive Agents/adverse effects , Male , Middle Aged , Mycophenolic Acid , TOR Serine-Threonine Kinases , Transplant Recipients
17.
Am J Transplant ; 22(7): 1884-1892, 2022 07.
Article in English | MEDLINE | ID: covidwho-1956680

ABSTRACT

The development of donor-specific antibodies (DSA) after lung transplantation is common and results in adverse outcomes. In kidney transplantation, Belatacept has been associated with a lower incidence of DSA, but experience with Belatacept in lung transplantation is limited. We conducted a two-center pilot randomized controlled trial of de novo immunosuppression with Belatacept after lung transplantation to assess the feasibility of conducting a pivotal trial. Twenty-seven participants were randomized to Control (Tacrolimus, Mycophenolate Mofetil, and prednisone, n = 14) or Belatacept-based immunosuppression (Tacrolimus, Belatacept, and prednisone until day 89 followed by Belatacept, Mycophenolate Mofetil, and prednisone, n = 13). All participants were treated with rabbit anti-thymocyte globulin for induction immunosuppression. We permanently stopped randomization and treatment with Belatacept after three participants in the Belatacept arm died compared to none in the Control arm. Subsequently, two additional participants in the Belatacept arm died for a total of five deaths compared to none in the Control arm (log rank p = .016). We did not detect a significant difference in DSA development, acute cellular rejection, or infection between the two groups. We conclude that the investigational regimen used in this study is associated with increased mortality after lung transplantation.


Subject(s)
Lung Transplantation , Tacrolimus , Abatacept/therapeutic use , Antilymphocyte Serum/therapeutic use , Graft Rejection/drug therapy , Graft Rejection/etiology , Graft Rejection/prevention & control , Graft Survival , Humans , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Lung Transplantation/adverse effects , Mycophenolic Acid/therapeutic use , Pilot Projects , Prednisone
18.
Transplantation ; 106(10): e452-e460, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1948635

ABSTRACT

BACKGROUND: Solid organ transplant recipients (SOTRs) are less likely to mount an antibody response to SARS-CoV-2 mRNA vaccines. Understanding risk factors for impaired vaccine response can guide strategies for antibody testing and additional vaccine dose recommendations. METHODS: Using a nationwide observational cohort of 1031 SOTRs, we created a machine learning model to explore, identify, rank, and quantify the association of 19 clinical factors with antibody responses to 2 doses of SARS-CoV-2 mRNA vaccines. External validation of the model was performed using a cohort of 512 SOTRs at Houston Methodist Hospital. RESULTS: Mycophenolate mofetil use, a shorter time since transplant, and older age were the strongest predictors of a negative antibody response, collectively contributing to 76% of the model's prediction performance. Other clinical factors, including transplanted organ, vaccine type (mRNA-1273 versus BNT162b2), sex, race, and other immunosuppressants, showed comparatively weaker associations with an antibody response. This model showed moderate prediction performance, with an area under the receiver operating characteristic curve of 0.79 in our cohort and 0.67 in the external validation cohort. An online calculator based on our prediction model is available at http://transplantmodels.com/covidvaccine/ . CONCLUSIONS: Our machine learning model helps understand which transplant patients need closer follow-up and additional doses of vaccine to achieve protective immunity. The online calculator based on this model can be incorporated into transplant providers' practice to facilitate patient-centric, precision risk stratification and inform vaccination strategies among SOTRs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Transplant Recipients , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunosuppressive Agents/adverse effects , Machine Learning , Mycophenolic Acid , SARS-CoV-2 , Vaccines , Vaccines, Synthetic , mRNA Vaccines
19.
BMC Nephrol ; 23(1): 199, 2022 05 31.
Article in English | MEDLINE | ID: covidwho-1933094

ABSTRACT

BACKGROUND: Dialysis patients and immunosuppressed renal patients are at increased risk of COVID-19 and were excluded from vaccine trials. We conducted a prospective multicentre study to assess SARS-CoV-2 vaccine antibody responses in dialysis patients and renal transplant recipients, and patients receiving immunosuppression for autoimmune disease. METHODS: Patients were recruited from three UK centres (ethics:20/EM/0180) and compared to healthy controls (ethics:17/EE/0025). SARS-CoV-2 IgG antibodies to spike protein were measured using a multiplex Luminex assay, after first and second doses of Pfizer BioNTech BNT162b2(Pfizer) or Oxford-AstraZeneca ChAdOx1nCoV-19(AZ) vaccine. RESULTS: Six hundred ninety-two patients were included (260 dialysis, 209 transplant, 223 autoimmune disease (prior rituximab 128(57%)) and 144 healthy controls. 299(43%) patients received Pfizer vaccine and 379(55%) received AZ. Following two vaccine doses, positive responses occurred in 96% dialysis, 52% transplant, 70% autoimmune patients and 100% of healthy controls. In dialysis patients, higher antibody responses were observed with the Pfizer vaccination. Predictors of poor antibody response were triple immunosuppression (adjusted odds ratio [aOR]0.016;95%CI0.002-0.13;p < 0.001) and mycophenolate mofetil (MMF) (aOR0.2;95%CI 0.1-0.42;p < 0.001) in transplant patients; rituximab within 12 months in autoimmune patients (aOR0.29;95%CI 0.008-0.096;p < 0.001) and patients receiving immunosuppression with eGFR 15-29 ml/min (aOR0.031;95%CI 0.11-0.84;p = 0.021). Lower antibody responses were associated with a higher chance of a breakthrough infection. CONCLUSIONS: Amongst dialysis, kidney transplant and autoimmune populations SARS-CoV-2 vaccine antibody responses are reduced compared to healthy controls. A reduced response to vaccination was associated with rituximab, MMF, triple immunosuppression CKD stage 4. Vaccine responses increased after the second dose, suggesting low-responder groups should be prioritised for repeated vaccination. Greater antibody responses were observed with the mRNA Pfizer vaccine compared to adenovirus AZ vaccine in dialysis patients suggesting that Pfizer SARS-CoV-2 vaccine should be the preferred vaccine choice in this sub-group.


Subject(s)
Autoimmune Diseases , COVID-19 , Viral Vaccines , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mycophenolic Acid , Renal Dialysis , Rituximab , SARS-CoV-2
20.
Front Immunol ; 13: 888385, 2022.
Article in English | MEDLINE | ID: covidwho-1924104

ABSTRACT

Objective: This is the first systematic review and meta-analysis to determine the factors that contribute to poor antibody response in organ transplant recipients after receiving the 2-dose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Method: Data was obtained from Embase, PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), and Chinese Biomedical Literature Database (CBM). Studies reporting factors associated with antibody responses to the 2-dose SARS-CoV-2 vaccine in solid organ transplant recipients were included in our study based on the inclusion and exclusion criteria. Two researchers completed the literature search, screening, and data extraction. Randomized models were used to obtain results. Egger's test was performed to determine publication bias. Sensitivity analysis was performed to determine the stability of the result. The heterogeneity was determined using the Galbraith plot and subgroup analysis. Results: A total of 29 studies were included in the present study. The factors included living donor, BNT162b2, tacrolimus, cyclosporine, antimetabolite, mycophenolic acid (MPA) or mycophenolate mofetil (MMF), azathioprine, corticosteroids, high-dose corticosteroids, belatacept, mammalian target of rapamycin (mTOR) inhibitor, tritherapy, age, estimated glomerular filtration rate (eGFR), hemoglobin, and tacrolimus level were significantly different. Multivariate analysis showed significant differences in age, diabetes mellitus, MPA or MMF, high-dose corticosteroids, tritherapy, and eGFR. Conclusion: The possible independent risk factors for negative antibody response in patients with organ transplants who received the 2-dose SARS-CoV-2 vaccine include age, diabetes mellitus, low eGFR, MPA or MMF, high-dose corticosteroids, and triple immunosuppression therapy. mTOR inhibitor can be a protective factor against weak antibody response. Systematic Review Registration: PROSPERO, identifier CRD42021257965.


Subject(s)
COVID-19 , Diabetes Mellitus , Kidney Transplantation , Adult , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Diabetes Mellitus/drug therapy , Graft Rejection/prevention & control , Humans , Kidney Transplantation/methods , Mycophenolic Acid , Risk Factors , SARS-CoV-2 , TOR Serine-Threonine Kinases , Tacrolimus
SELECTION OF CITATIONS
SEARCH DETAIL